Elementy teorii Galois

Już starożytni Grecy potrafili rozwiązywać równania liniowe i pewne równania kwadratowe. W XVI w. matematycy włoscy znalerli rozwiązania równań algebraicznych stopnia trzeciego i czwartego. Później przez blisko trzysta lat poszukiwano bez powodzenia wzorów na pierwiastki równań stopni wyższych niż cztery. W 1824 r. N. Abel udowodnił, że wzory takie, tzn. wyrażające pierwiastki za pomocą działań: dodawania, odejmowania, mnożenia dzielenia i pierwiastkowania wykonanych na współczynnikach równania, nie istnieją. Wprawdzie nie istnieją wzory ogólne, ale mogą istnieć wzory na pierwiastki określonego równania. Waiunki, jakie określone równanie musi spełniać, aby jego pierwiastek można było zapisać przy użyciu wspomnianych działań, podał w 1832 r. genialny matematyk francuski Evariste Galois. Przedstawieniu elementów jego teorii poświęcona jest niniejsza książka.
دقت کنید این منابع به صورت رایگان داخل سایت موجود است و می توانید از صفحه دانلود رایگان کتاب های لاتین ( درخواست کتاب لاتین ) پس از جستجو، به صورت رایگان دانلود کنید.
  • 115
  • Delta przedstawia nr.1
  • Bryński Maciej
  • 1985
  • Alfa
  • Warszawa
  • 111
  • Polish
  • 9788370010553,8370010555
تصویر
10,000 تومان

توجه: فایل درخواستی حداکثر 8 ساعت بعد ارسال خواهد شد.

ثبت درخواست و پرداخت
  • 102769
  • pdf
  • 78MB
می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید.

نام
ایمیل
تلفن تماس
سوال یا نظر
ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.