خرید کتاب از گوگل

چاپ کتاب PDF,

خرید کتاب از آمازون,

خرید کتاب زبان اصلی,

دانلود کتاب خارجی,

دانلود کتاب لاتین

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable

Parallelism is the key to achieving high performance in computing. However, writing efficient and scalable parallel programs is notoriously difficult, and often requires significant expertise. To address this challenge, it is crucial to provide programmers with high-level tools to enable them to develop solutions easily, and at the same time emphasize the theoretical and practical aspects of algorithm design to allow the solutions developed to run efficiently under many different settings. This thesis addresses this challenge using a three-pronged approach consisting of the design of shared-memory programming techniques, frameworks, and algorithms for important problems in computing. The thesis provides evidence that with appropriate programming techniques, frameworks, and algorithms, shared-memory programs can be simple, fast, and scalable, both in theory and in practice. The results developed in this thesis serve to ease the transition into the multicore era.

The first part of this thesis introduces tools and techniques for deterministic parallel programming, including means for encapsulating nondeterminism via powerful commutative building blocks, as well as a novel framework for executing sequential iterative loops in parallel, which lead to deterministic parallel algorithms that are efficient both in theory and in practice. The second part of this thesis introduces Ligra, the first high-level shared memory framework for parallel graph traversal algorithms. The framework allows programmers to express graph traversal algorithms using very short and concise code, delivers performance competitive with that of highly-optimized code, and is up to orders of magnitude faster than existing systems designed for distributed memory. This part of the thesis also introduces Ligra+, which extends Ligra with graph compression techniques to reduce space usage and improve parallel performance at the same time, and is also the first graph processing system to support in-memory graph compression.

The third and fourth parts of this thesis bridge the gap between theory and practice in parallel algorithm design by introducing the first algorithms for a variety of important problems on graphs and strings that are efficient both in theory and in practice. For example, the thesis develops the first linear-work and polylogarithmic-depth algorithms for suffix tree construction and graph connectivity that are also practical, as well as a work-efficient, polylogarithmic-depth, and cache-efficient shared-memory algorithm for triangle computations that achieves a 2 5x speedup over the best existing algorithms on 40 cores.

This is a revised version of the thesis that won the 2015 ACM Doctoral Dissertation Award.

"
دقت کنید این منابع به صورت رایگان داخل سایت موجود است و می توانید از صفحه دانلود رایگان کتاب های لاتین ( درخواست کتاب لاتین ) پس از جستجو، به صورت رایگان دانلود کنید.
  • 444
  • Julian Shun
  • 2017
  • Hardcover
  • ACM Books
  • 0
  • English
  • 1970001917,9781970001914
تصویر
29,000 تومان

توجه: فایل درخواستی حداکثر 8 ساعت بعد ارسال خواهد شد.

ثبت درخواست و پرداخت
  • 110984
  • pdf
  • 4.2MB
می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید.

نام
ایمیل
تلفن تماس
سوال یا نظر
کتاب زبان اصلی J.R.R
خرید کیندل آمازون-
کتاب انگلیسی-
مجله نیوانگلند-
نمایشنامه-
خرید کتاب آمازون-
خرید کتاب فیزیکی از آمازون-
کیندل چیست-
خرید pdf کتاب خارجی-
خرید کیندل-
خرید کتاب از گوگل پلی
ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.
X