Bayesian Filtering and Smoothing

Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.
دقت کنید این منابع به صورت رایگان داخل سایت موجود است و می توانید از صفحه دانلود رایگان کتاب های لاتین ( درخواست کتاب لاتین ) پس از جستجو، به صورت رایگان دانلود کنید.
تصویر
29,000 تومان

توجه: فایل درخواستی حداکثر 8 ساعت بعد ارسال خواهد شد.

ثبت درخواست و پرداخت
  • 64767
  • pdf
  • 4.3MB
می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید.

نام
ایمیل
تلفن تماس
سوال یا نظر
ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.
X