A systematic and integrated account of signal and data processing with emphasis on the distinctive marks of the ocean environment is provided in this informative text. Underwater problems such as space-time processing relations vs. disjointed ones, processing of passive observations vs. active ones, time delay estimation vs. frequency estimation, channel effects vs. transparent ones, integrated study of signal, data, and channel processing vs. separate ones, are highlighted. The book provides the beginner with a concise presentation of the essential concepts, defines the basic computational steps, and gives the mature reader an advanced view of underwater systems and the relationships among their building blocks. It presents the needed topics on applied estimation theory within the underwater systems context. Included are topics in linear and nonlinear filtering, spectral analysis, generalized correlation, cepstrum and complex demodulation, Cramer-Rao Bounds, maximum likelihood, weighted least-squares, Kalman filtering, expert systems, wave propagation and their use, as well as their performance in applications to canonical ocean problems. The applications center on the definition, analysis, and solution implementations to representative underwater signal analysis problems dealing with signals estimation, their location and motion. The potential limitations and pitfalls of the implementations are delineated in homogeneous, noisy, interfering, inhomogeneous, multipath, distortions, and/or dispersive channels