Model theory is a thriving branch of mathematical logic with strong connections to other fields of mathematics. Its versatility has recently led to spectacular applications in areas ranging from diophantine geometry, algebraic number theory and group theory to combinatorics.
This volume presents lecture notes from a spring school in model theory which took place in Münster, Germany. The notes are aimed at PhD students but should also be accessible to undergraduates with some basic knowledge in model theory. They contain the core of stability theory (Bays, Palacín), two chapters connecting generalized stability theory with group theory (Clausen and Tent, Simon), as well as introductions to the model theory of valued fields (Hils, Jahnke) and motivic integration (Halupczok).
Keywords: Model theory, stability theory, NIP theories, definably amenable groups, profinite groups, valuation theory, algebraically closed valued fields, motivic integration