Harmonic Analysis Method for Nonlinear Evolution Equations, I
Description:... 1. Fourier multiplier, function space [symbol]. 1.1. Schwartz space, tempered distribution, Fourier transform. 1.2. Fourier multiplier on L[symbol]. 1.3. Dyadic decomposition, Besov and Triebel spaces. 1.4. Embeddings on X[symbol]. 1.5. Differential-difference norm on [symbol]. 1.6. Homogeneous space [symbol] 1.7. Bessel (Riesz) potential spaces [symbol]. 1.8. Fractional Gagliardo-Nirenberg inequalities -- 2. Navier-Stokes equation. 2.1. Introduction. 2.2. Time-space estimates for the heat semi-group. 2.3. Global well-posedness in L[symbol] of NS in 2D. 2.4. Well-posedness in L[symbol] of NS in higher dimensions. 2.5. Regularity of solutions for NS -- 3. Strichartz estimates for linear dispersive equations. 3.1. [symbol] estimates for the dispersive semi-group. 3.2. Strichartz inequalities : dual estimate techniques. 3.3. Strichartz estimates at endpoints -- 4. Local and global wellposedness for nonlinear dispersive equations. 4.1. Why is the Strichartz estimate useful. 4.2. Nonlinear mapping estimates in Besov spaces. 4.3. Critical and subcritical NLS in H[symbol]. 4.4. Global wellposedness of NLS in L[symbol] and H[symbol]. 4.5. Critical and subcritical NLKG in H[symbol]. 5. The low regularity theory for the nonlinear dispersive equations. 5.1. Bourgain space. 5.2. Local smoothing effect and maximal function estimates. 5.3. Bilinear estimates for KdV and local well-posedness. 5.4. Local well-posedness for KdV in H[symbol]. 5.5. I-method. 5.6. Schrodinger equation with derivative. 5.7. Some other dispersive equations -- 6. Frequency-uniform decomposition techniques. 6.1. Why does the frequency-uniform decomposition work. 6.2. Frequency-uniform decomposition, modulation spaces. 6.3. Inclusions between Besov and modulation spaces. 6.4. NLS and NLKG in modulation spaces. 6.5. Derivative nonlinear Schrodinger equations -- 7. Conservations, Morawetz' estimates of nonlinear Schrodinger equations. 7.1. Nother's theorem. 7.2. Invariance and conservation law. 7.3. Virial identity and Morawetz inequality. 7.4. Morawetz' interaction inequality. 7.5. Scattering results for NLS -- 8. Boltzmann equation without angular cutoff. 8.1. Models for collisions in kinetic theory. 8.2. Basic surgery tools for the Boltzmann operator. 8.3. Properties of Boltzmann collision operator without cutoff. 8.4 Regularity of solutions for spatially homogeneous case
Show description