Transport Phenomena in Fuel Cells
Description:... Fuel cells are expected to play a significant role in the next generation of energy systems and road vehicles for transportation. However, before this can happen, substantial progress is required in reducing manufacturing costs and improving performance. Many of the heat and mass transport processes associated with fuel cells are not well understood and, depending on the fuel being used, modifications in the design of the next generation of cells are needed. This is the first book to provide a comprehensive analysis of transport phenomena in fuel cells, covering fundamental aspects of their function, operation and practical consequences. It will contribute to the understanding of such processes in Solid Oxide Fuel Cells (SOFC), Proton Exchange Membrane Fuel Cells (PEMFC) and Direct Methanol Fuel Cells (DMFC). Written by eminent scientists and research engineers in the field, individual chapters focus on various mathematical models and simulations of transport phenomena in multiphase flows including dominant processes such as heat and mass transport and chemical reactions. Relevant experimental data is also featured. A detailed summary of state-of-the-art knowledge and future needs, the text will be of interest to graduate students and researchers working on the development of fuel cells within academia and industry.
Show description