برای ثبت درخواست به انتهای صفحه مراجعه کنید.

Analisis dan Prediksi Stroke Menggunakan Scikit-Learn, Keras, dan TensorFlow dengan Python GUI

Description:...

Menurut Organisasi Kesehatan Dunia (WHO), stroke adalah penyebab kematian ke-2 secara global, yang bertanggung jawab atas sekitar 11% dari total kematian.

Dataset yang digunakan pada penelitian ini berguna untuk memprediksi kemungkinan seorang pasien terkena stroke berdasarkan parameter masukan seperti jenis kelamin, usia, berbagai penyakit, dan status merokok. Setiap baris dalam data memberikan informasi yang relevan tentang pasien. Informasi tiap kolom: id: Pengenal unik; gender: "Male", "Female" atau "Other"; age: Usia pasien; hypertension: 0 jika pasien tidak memiliki hipertensi, 1 jika pasien memiliki hipertensi; heart_disease: 0 jika pasien tidak memiliki penyakit jantung, 1 jika pasien memiliki penyakit jantung; ever_married: "No" atau "Yes"; work_type: "children", "Govt_jov", "Never_worked", "Private" atau "Self-employed"; Residence_type: "Rural" atau "Urban"; avg_glucose_level: Rata-rata kadar glukosa dalam darah; bmi: body mass index; smoking_status: "formerly smoked", "never smoked", "smokes" atau "Unknown"*; stroke: 1 jika pasien mengalami stroke atau 0 jika tidak.

Selanjutnya, Anda akan belajar menggunakan Scikit-Learn, Keras, TensorFlow, NumPy, Pandas, Seaborn, dan sejumlah Pustaka lain untuk menganalisa dan memprediksi stroke menggunakan dataset yang disediakan di Kaggle. Model-model yang digunakan adalah K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, Gradient Boosting, LGBM classifier, XGB classifier, MLP classifier, dan CNN 1D.

Terakhir, Anda akan mengembangkan GUI menggunakan Qt Designer dan PyQt5 untuk ROC, distribusi fitur, keutamaan fitur, menampilkan batas-batas keputusan tiap model, diagram nilai-nilai prediksi versus nilai-nilai sebenarnya, matriks confusion, rugi pelatihan, rugi akurasi, kurva pembelajaran model, skalabilitas model, dan kinerja model. 


Show description

* ایمیل (آدرس Email را با دقت وارد کنید)
لینک پیگیری درخواست ایمیل می شود.
شماره تماس (ارسال لینک پیگیری از طریق SMS)
نمونه: 09123456789

در صورت نیاز توضیحات تکمیلی درخواست خود را وارد کنید

* تصویر امنیتی
 

به شما اطمینان می دهیم در کمتر از 8 ساعت به درخواست شما پاسخ خواهیم داد.

* نتیجه بررسی از طریق ایمیل ارسال خواهد شد

ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.
X