Machine learning in data analysis for stroke/endovascular therapy
Description:... With an estimated global incidence of 11 million patients per year, research involving ischemic stroke requires the collection and analysis of massive data sets affected by innumerable variables. Landmark studies that have historically shaped the foundation of our understanding of ischemic stroke and the development of management protocols have been derived from only a miniscule fraction of a percent of the entire population due to feasibility and capability. Machine learning provides an opportunity to capture data from an extraordinarily larger cohort size, which can be applied to training models to formulate algorithms to forecast outcomes with unparalleled accuracy and efficiency. The paradigm-shifting integration of machine learning in other industries, i.e. robotics, finance, and marketing, foreshadows its inevitable application to large population-based clinical research and practice.
While prior multi-center studies have relied heavily on catalogued datasets requiring substantial manpower, the recent development of modern statistical methods can potentially expand the available quantity and quality of clinical data. In conjunction with data mining, machine learning has allowed automated extraction of clinical information from imaging, surgical videos, and electronic medical records to identify previously unseen patterns and create prediction models. Recently, it’s use in real-time detection of large vessel occlusion has streamlined health care delivery to a level of efficiency previously unmatched. The application of machine learning in ischemic stroke research – data acquisition, image evaluation, and prediction models – has the potential to reduce human error and increase reproducibility, accuracy, and precision with an unprecedented degree of power. However, one of the challenges with this integration remains the methods in which machine learning is utilized. Given the novelty of machine learning in clinical research, there remains significant variations in the application of machine learning tools and algorithms. The focus of the research topic is to provide a platform to compare the merits of various learning approaches – supervised, semi-supervised, unsupervised, self-learning – and the performances of various models.
Show description