Aluminum-Lithium Alloys
Chapter 8. Superplasticity in and Superplastic Forming of Aluminum–Lithium Alloys
Description:... Since the late 1950s, lithium is being used as an alloying element in aluminum. Their excellent ductility, which allows superplastic forming, along with their ability to decrease the density, makes aluminum-lithium alloys a primary choice for many structural applications in aerospace industry. This chapter initially discusses the processes and mechanisms that give rise to significant plasticity/Superplasticity in these alloy systems. The superplastic behavior of Al-Li alloys and their applications in forming are then discussed. The thickness variation during superplastic forming strongly depends on the peak strain rate sensitivity index (m) of the material, and an increase in the m value reduces the thickness variation in the formed component. The factors that help increase the value of m are enumerated. Superplastic forming is carried out at temperatures ≥ 0.5 Tm (Tm is the absolute melting temperature), often closer to 0.7 − 0.8 Tm. Significant cavitation and grain growth are present at such high temperatures. This has ushered in low temperature superplastic forming by the production of ultra-fine grain sizes via dispersion strengthening and severe plastic deformation (SPD). The promise of superplastic forming of Al-Li alloys for the future and the factors including cost that limit the use of Al-Li alloys are also discussed.
Show description