خرید کتاب از گوگل

چاپ کتاب PDF,

خرید کتاب از آمازون,

خرید کتاب زبان اصلی,

دانلود کتاب خارجی,

دانلود کتاب لاتین

برای ثبت درخواست به انتهای صفحه مراجعه کنید.

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Description:...

Widespread chronic diseases (e.g., heart diseases, diabetes and its complications,

stroke, cancer, brain diseases) constitute a significant cause of rising healthcare

costs and pose a significant burden on quality-of-life for many individuals. Despite

the increased need for smart healthcare sensing systems that monitor / measure

patients’ body balance, there is no coherent theory that facilitates the modeling of

human physiological processes and the design and optimization of future healthcare

cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s

physiological state based on available continuous sensing, quantify risk indices

corresponding to the onset of abnormality, signal the need for critical medical

intervention in real-time by communicating patient’s medical information via a

network from individual to hospital, and most importantly control (actuate) vital

health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized

homeostasis.


To prevent health complications, maintain good health and/or avoid fatal conditions

calls for a cross-disciplinary approach to HCPS design where recent statistical-physics

inspired discoveries done by collaborations between physicists and physicians are

shared and enriched by applied mathematicians, control theorists and bioengineers.

This critical and urgent multi-disciplinary approach has to unify the current state of

knowledge and address the following fundamental challenges: One fundamental

challenge is represented by the need to mine and understand the complexity of

the structure and dynamics of the physiological systems in healthy homeostasis

and associated with a disease (such as diabetes). Along the same lines, we need

rigorous mathematical techniques for identifying the interactions between integrated

physiologic systems and understanding their role within the overall networking

architecture of healthy dynamics. Another fundamental challenge calls for a deeper

understanding of stochastic feedback and variability in biological systems and

physiological processes, in particular, and for deciphering their implications not

only on how to mathematically characterize homeostasis, but also on defining new

control strategies that are accounting for intra- and inter-patient specificity – a truly

mathematical approach to personalized medicine.


Numerous recent studies have demonstrated that heart rate variability, blood glucose,

neural signals and other interdependent physiological processes demonstrate

fractal and non-stationary characteristics. Exploiting statistical physics concepts,

numerous recent research studies demonstrated that healthy human physiological

processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed

when prolonged abnormal deviations are observed. In addition, several efforts have

tried to connect these fractal characteristics with new optimal control strategies that

implemented in medical devices such as pacemakers and artificial pancreas could

improve the efficiency of medical therapies and the quality-of-life of patients but

neglecting the overall networking architecture of human physiology. Consequently,

rigorously analyzing the complexity and dynamics of physiological processes

(e.g., blood glucose and its associated implications and interdependencies with

other physiological processes) represents a fundamental step towards providing

a quantifiable (mathematical) definition of homeostasis in the context of critical

phenomena, understanding the onset of chronic diseases, predicting deviations

from healthy homeostasis and developing new more efficient medical therapies that

carefully account for the physiological complexity, intra- and inter-patient variability,

rather than ignoring it.


This Research Topic aims to open a synergetic and timely effort between physicians,

physicists, applied mathematicians, signal processing, bioengineering and biomedical

experts to organize the state of knowledge in mining the complexity of physiological

systems and their implications for constructing more accurate mathematical models

and designing QoL-aware control strategies implemented in the new generation

of HCPS devices. By bringing together multi-disciplinary researchers seeking to

understand the many aspects of human physiology and its complexity, we aim

at enabling a paradigm shift in designing future medical devices that translates

mathematical characteristics in predictable mathematical models quantifying not

only the degree of homeostasis, but also providing fundamentally new control

strategies within the personalized medicine era.

Show description

* ایمیل (آدرس Email را با دقت وارد کنید)
لینک پیگیری درخواست ایمیل می شود.
شماره تماس (ارسال لینک پیگیری از طریق SMS)
نمونه: 09123456789

در صورت نیاز توضیحات تکمیلی درخواست خود را وارد کنید

* تصویر امنیتی
 

به شما اطمینان می دهیم در کمتر از 8 ساعت به درخواست شما پاسخ خواهیم داد.

* نتیجه بررسی از طریق ایمیل ارسال خواهد شد

کتاب زبان اصلی J.R.R
سفارش کتاب خارجی-
درخواست کتاب از آمازون-
کتاب خارجی برای هدیه-
سایت کتاب زبان اصلی-
کتاب انگلیسی-
آموزش پاورمیل زبان اصلی-
کتاب Solidworks زبان اصلی-
خرید کتاب از گوگل پلی-
خرید مجله اورجینال-
دانلود فایل های زبان اصلی شیمی تحلیلی
ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.
X