برای ثبت درخواست به انتهای صفحه مراجعه کنید.

DEEP LEARNING WITH PYTORCH

Master the Construction of Modern Neural Networks with Practicality and Efficiency – 2024 Edition

Description:...

DEEP LEARNING WITH PYTORCH: Master the Construction of Modern Neural Networks with Practicality and Efficiency – 2024 Edition, a comprehensive guide to elevate your artificial intelligence skills. Written by Diego Rodrigues, an international author with over 180 titles published in six languages, this book bridges the gap between theory and practice for creating innovative solutions with PyTorch, one of the most advanced deep learning libraries in the world.

Whether you are a beginner or an experienced professional, this book provides a structured approach, from basics to advanced techniques, to apply Deep Learning efficiently and robustly. From tensor manipulation to the development of CNNs, RNNs, and Transformer architectures, you will find practical exercises and real-world applications that will help you solve modern-day problems.

You will learn to:

Build custom neural networks and implement them with PyTorch.

Use advanced features such as distributed processing and GPU acceleration.

Apply Deep Learning to computer vision, NLP, and other critical areas.

Adopt best practices for data preprocessing, model validation, and optimization.

The content includes applied case studies and practical examples optimized for cloud platforms like AWS and Google Cloud, offering a holistic view of implementing solutions with PyTorch.

If you are ready to transform ideas into technological innovations, DEEP LEARNING WITH PYTORCH is the ultimate resource to shape the future with artificial intelligence.


TAGS:

Python Java Linux Kali HTML ASP.NET Ada Assembly BASIC Borland Delphi C C# C++ CSS Cobol Compilers DHTML Fortran General JavaScript LISP PHP Pascal Perl Prolog RPG Ruby SQL Swift UML Elixir Haskell VBScript Visual Basic XHTML XML XSL Django Flask Ruby on Rails Angular React Vue.js Node.js Laravel Spring Hibernate .NET Core Express.js TensorFlow PyTorch Jupyter Notebook Keras Bootstrap Foundation jQuery SASS LESS Scala Groovy MATLAB R Objective-C Rust Go Kotlin TypeScript Dart SwiftUI Xamarin React Native NumPy Pandas SciPy Matplotlib Seaborn D3.js OpenCV NLTK PySpark BeautifulSoup Scikit-learn XGBoost CatBoost LightGBM FastAPI  Redis RabbitMQ Kubernetes Docker Jenkins Terraform Ansible Vagrant GitHub GitLab CircleCI  Regression Logistic Regression Decision Trees Random Forests AI ML K-Means Clustering Support Vector Machines Gradient Boosting Neural Networks LSTMs CNNs GANs ANDROID IOS MACOS WINDOWS Nmap Metasploit Framework Wireshark Aircrack-ng John the Ripper Burp Suite SQLmap Maltego Autopsy Volatility IDA Pro OllyDbg YARA Snort ClamAV Netcat Tcpdump Foremost Cuckoo Sandbox Fierce HTTrack Kismet Hydra Nikto OpenVAS Nessus ZAP Radare2 Binwalk GDB OWASP Amass Dnsenum Dirbuster Wpscan Responder Setoolkit Searchsploit Recon-ng BeEF AWS Google Cloud IBM Azure Databricks Nvidia Meta Power BI IoT CI/CD Hadoop Spark Dask SQLAlchemy Web Scraping MySQL Big Data Science OpenAI ChatGPT Handler RunOnUiThread() Qiskit Q# Cassandra Bigtable VIRUS MALWARE Information  Pen Test Cybersecurity Linux Distributions Ethical Hacking Vulnerability Analysis System Exploration Wireless Attacks Web Application Security Malware Analysis Social Engineering Social Engineering Toolkit SET Computer Science IT Professionals Careers Expertise Library Training Operating Systems Security Testing Penetration Test Cycle Mobile Techniques Industry Global Trends Tools   Framework Network Security Courses Tutorials Challenges Landscape Cloud Threats Compliance Research Technology Flutter Ionic Web Views Capacitor APIs REST GraphQL Firebase Redux Provider Bitrise Actions Material Design Cupertino Fastlane Appium Selenium Jest  Visual Studio AR VR



Show description

* ایمیل (آدرس Email را با دقت وارد کنید)
لینک پیگیری درخواست ایمیل می شود.
شماره تماس (ارسال لینک پیگیری از طریق SMS)
نمونه: 09123456789

در صورت نیاز توضیحات تکمیلی درخواست خود را وارد کنید

* تصویر امنیتی
 

به شما اطمینان می دهیم در کمتر از 8 ساعت به درخواست شما پاسخ خواهیم داد.

* نتیجه بررسی از طریق ایمیل ارسال خواهد شد

ضمانت بازگشت وجه بدون شرط
اعتماد سازی
انتقال وجه کارت به کارت
X

پرداخت وجه کارت به کارت

شماره کارت : 6104337650971516
شماره حساب : 8228146163
شناسه شبا (انتقال پایا) : IR410120020000008228146163
بانک ملت به نام مهدی تاج دینی

پس از پرداخت به صورت کارت به کارت، 4 رقم آخر شماره کارت خود را برای ما ارسال کنید.
X